Tetrahedron Letters No.37, pp. 2575-2578, 1964. Pergamon Press Ltd. Printed in Great Britain.

UBER DIE EINWIRKUNG VON DIAZOXANTHEN AUF TETRACHLORKOHLENSTOFF UND CHLOROFORM

A. Schönberg und E. Frese

Fakultät für Allgemeine Ingenieurwissenschaften der
Technischen Universität Berlin
(Received 27 July 1964)

H.Reimlinger berichtete kürzlich^{1,2)} über die Umsetzung von Diechlorcarben mit Diaryl-diazomethanen, wobei Dichlormethylenver= bindungen resultierten. So wurde zum Beispiel aus Diazofluoren und dem aus Chloroform oder Trichlormethylacetat mit Hilfe von Kalium-tert.-butylat gewonnenen Dichlorcarben Dichlormethylen-fluoren gebildet, siehe (1).

Wir fanden, dass sich Diazoxanthen (I) in stark exothermer Reaktion bei Raumtemperatur unter Lichtausschluss mit Tetrachlor = kohlenstoff zu Dichlormethylen-xanthen (II), Fp.: 112-114° (um= gelöst aus wenig Methanol), Ausbeute 65%, und 9.9'-Dichlor-di= xanthyl (III)³⁾, Ausbeute 85%, umsetzte. Das intermediäre Auftreten von Dichlorcarben bei dieser Reaktion ist unseres Erachtens unwahrscheinlich.

$$3 \stackrel{\triangleright}{\triangleright} N_2 + CCl_4 \longrightarrow \stackrel{\triangleright}{\triangleright} C \stackrel{Cl}{\triangleright} Cl + \stackrel{\triangleright}{\triangleright} Cl \stackrel{Cl}{\triangleright} Cl + \stackrel{\triangleright}{\triangleright} 3 N_2$$

$$1 \qquad \qquad 1 \qquad \qquad$$

Als Konstitutionsbeweis für II diente der direkte Vergleich mit einer Substanz, die wir in unabhängiger Synthese in Analogie zu H.Staudinger⁴⁾ aus I und Thiophosgen durch nachfolgende Ent = schwefelung des zunächst entstandenen Äthylensulfids mittels Kupferpulver herstellten.

$$I + S = C \subset_{CL}^{CL} \xrightarrow{-N_2} S \subset_{CL}^{CL} \xrightarrow{+Cu} II + CuS$$
 (3)

Das 9.9'-Dichlor-dixanthyl (III) konnten wir ebenfalls in un= abhängiger Synthese gewinnen und zwar durch Einwirkung von I auf 9.9-Dichlorxanthen (IV), siehe (2), ein neues Beispiel der schon von uns sichergestellten Reaktion zwischen Diaryl-diazo=methanen und geminalen Halogenverbindungen (Ketochloriden)³⁾. Wir nehmen deshalb an, dass bei der Umsetzung gemäss (2) neben II zunächst IV entsteht, das aufgrund seiner grossen Reaktivi=tät in situ mit einem weiteren Mol I zu III weiterreagiert.

Die Aufarbeitung des nach (2) entstandenen Reaktions=

gemisches wurde wie folgt durchgeführt:Der vom Lösungsmittel im Vakuum befreite Rückstand wurde völlig in Methanol gelöst und nach Stehen im Eisschrank das fast quantitativ auskristal= lisierte III abfiltriert.Das Filtrat wurde vom Methanol be = freit und der Rückstand der Säulenchromatographie (neutra = les Aluminiumoxyd nach Brockmann) unterworfen.Das Eluat,Ben= zin (40-60°),enthielt fast reines II.Die vorherige Abtrennung von III erwies sich als notwendig,da,wie wir nachweisen konn= ten, III durch Aluminiumoxyd zu Dixanthylen enthalogeniert wurde.

Eine bemerkenswerte Eigenschaft von II ist,dass es sich bei Raumtemperatur farblos in «C-Chlornaphthalin löst und diese Lösung oberhalb 200° eine tiefviolette Farbe annimmt,die auch beim nachfolgenden Erkalten bestehen bleibt.Dieser Versuch wurde unter trocknem Reinstickstoff bei Lichtausschluss aus= geführt.Dichlormethylen-fluoren zeigte unter gleichen Ver = suchsbedingungen kein analoges Farbphänomen!

Bei der Einwirkung von I auf Chloroform (Raumtemperatur und Lichtausschluss) isolierten wir neben II (60%) 9-Äthoxy - dixanthyl (VI) (75%).Letzteres entstand bei der Aufarbei = tung (Verwendung von Äthanol) aus dem Primärprodukt 9-Chlordixanthyl (V).Die Bildung von VI aus Äthanol und V wurde auch

unabhängig durchgeführt.

Wir nehmen an, dass bei der Einwirkung von I auf Chloroform als Primärprodukte zunächst II und 9-Chlorxanthen (VII) entstehen. Das reaktive VII setzt sich in situ sofort mit weiterem I zu V um. Diese Annahme wird durch folgende Umsetzungen gestützt: V konnte durch direkte Einwirkung von I auf VII gewonnen werden. H. Staudinger⁵⁾ isolierte bei der Umsetzung von Diazofluoren mit trockenem Chlorwasserstoff 9-Chlorfluoren. Eine analoge Umsetzung mit I ergab jedoch V (80%), eine Reaktion, die sich lediglich durch die intermediäre Bildung von VII erklären lässt.

Über Einzelheiten und weitere Resultate berichten wir in einer umfangreicheren Zusammenfassung.

LITERATUR

- 1)H.Reimlinger, Angew. Chemie 74,153 (1962)
- 2)H.Reimlinger, Chem. Ber. 97,339 (1964)
- 3)A.Schönberg und E.Frese, Angew. Chemie 76,343 (1964)
- 4)H.Staudinger, Helv.chim.Acta 3, 843 und 847 (1920)
- 5)H.Staudinger und A.Gaule, Ber.d. dtsch.chem.Ges. 49,1956 (1916)